A Note on Sequence-covering Images of Metric Spaces

نویسنده

  • NGUYEN VAN DUNG
چکیده

In this brief note, we prove that every space is a sequence-covering image of a topological sum of convergent sequences. As the application of this result, sequence-covering images of locally compact metric spaces (or, locally separable metric spaces, metric spaces) and sequentially-quotient images of a locally compact metric spaces (or, locally separable metric spaces, metric spaces) are equivalent. In [6], Z. Li and Y. Ge proved the following theorem. Theorem 1 ([6], Theorem 6). Let X be a space. Then there exists a metric space M and a pseudo-sequence-covering mapping f : M −→ X. By using this result, the authors obtained that pseudo-sequence-covering images of metric spaces and sequentially-quotient images of metric spaces are equivalent. After that, Y. Ge [4] showed the equivalence of sequence-covering images and sequentiallyquotient images for metric domains as follows. Theorem 2 ([4], Theorem 7). The following are equivalent for a space X. (1) X is a sequence-covering image of a metric space. (2) X is a pseudo-sequence-covering image of a metric space. (3) X is a sequentially-quotient image of a metric space. Take these results into account, note that “sequence-covering =⇒ pseudo-sequencecovering”, and “locally compact metric =⇒ locally separable metric =⇒ metric”, then the following questions are natural. Question 3. Can “pseudo-sequence-covering” in Theorem 1 be replaced by “sequencecovering”? Question 4. Can “metric” in Theorem 2 be replaced by “locally separable metric” or “locally compact metric”? 2000 Mathematics Subject Classification. 54E35, 54E40, 54D80.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Songlin Yang A NOTE ON SEQUENCE - COVERING IMAGES OF METRIC SPACES

In this paper, we prove that every topological space is a sequence-covering image of a metric space, which answers a question on pseudo-sequence-covering images of metric spaces.

متن کامل

ON SEQUENCE-COVERING mssc-IMAGES OF LOCALLY SEPARABLE METRIC SPACES

We characterize sequence-covering (resp., 1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces by means of σ-locally finite cs-networks (resp., sn-networks, so-networks) consisting of א0-spaces (resp., sn-second countable spaces, so-second countable spaces). As the applications, we get characterizations of certain sequence-covering, quotient mssc-images of lo...

متن کامل

On Pseudo-sequence-covering Π-images of Locally Separable Metric Spaces

In this paper, we characterize pseudo-sequence-covering π-images of locally separable metric spaces by means of fcs-covers and point-star networks. We also investigate pseudo-sequence-covering π-s-images of locally separable metric spaces.

متن کامل

On π-Images of Locally Separable Metric Spaces

To determine what spaces are the images of “nice” spaces under “nice” mappings is one of the central questions of general topology in 1 . In the past, many noteworthy results on images of metric spaces have been obtained. For a survey in this field, see 2 , for example. A characterization for a quotient compact image of a locally separable metric space is obtained in 3 . Also, such a quotient i...

متن کامل

On Π-images of Metric Spaces

In this paper, we prove that sequence-covering, π-images of metric spaces and spaces with a σ-strong network consisting of fcs-covers are equivalent. We also investigate π-images of separable metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009